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Abstract

This study addresses real-time anomaly segmentation in
road scenes, a critical task for applications like autonomous
driving. We evaluate baseline segmentation models (ENet,
ERFNet, BiSeNet) pretrained on Cityscapes, with different
metrics and methods, incorporating enhancements such as
temperature scaling, void classifiers, and fine-tuning with
different loss functions. Performance is assessed on bench-
mark datasets using AuPRC, FPR95, and mloU metrics.
Results highlight MaxLogit’s robustness, BiSeNet’s effi-
ciency, and the benefits of calibration and task-specific loss
functions for anomaly detection. These findings offer in-
sights into building efficient, reliable systems for real-world
environments. The source code of this project is available at
https://github.com/RonPlusSign/AnomalySegmentation.

1. Introduction

Anomaly segmentation is a critical task in computer vi-
sion that involves identifying regions within an image that
deviate from expected patterns. This capability has signif-
icant real-world applications, including detecting road ob-
stacles for autonomous driving vehicles or identifying de-
fective objects in industrial systems. Anomalies often rep-
resent unpredictable or rare events, such as fallen debris on
a roadway, making their detection essential for safety and
operational efficiency.

In this context, per-pixel anomaly segmentation focuses
on the identification of anomalous regions at the pixel
level. This task is particularly challenging due to the need
to distinguish between In-Distribution (ID) and Out-of-
Distribution (OOD) samples that the model has not encoun-
tered during training. In the domain of autonomous driving,
per-pixel anomaly segmentation ensures that the system can
accurately localize and respond to hazards, even when faced
with novel or unexpected scenarios.

Achieving real-time performance for per-pixel anomaly
segmentation is vital for its deployment in safety-critical ap-
plications, such as autonomous vehicles, which must pro-
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Figure 1. Visual comparison of anomaly segmentation output of
MSP and MaxLogit , applied on an image of the Road Anomaly
dataset. The image on the top left shows the input from the dataset,
followed by the ground truth segmentation. The image on the bot-
tom left the MSP output and at the bottom right the MaxLogit .

cess sensor data with minimal latency to make fast and reli-
able decisions. This requires methods that strike a balance
between computational efficiency and high detection accu-
racy.

In this paper, we explore per-pixel anomaly segmenta-
tion through a series of experiments designed to evaluate
and enhance its performance. We begin by establishing
and testing three baseline models for image segmentation
(ENet [13], ERFNet [15], and BiSeNet [ 18]), pretrained on
Cityscapes [4] and tested on different task-specific datasets
with different methods, followed by the application of tem-
perature scaling for confidence calibration. Additionally,
we introduce a Void Classifier [5] to explicitly leverage
OOD knowledge, and lastly we analyze the effects of dif-
ferent training loss functions specifically designed for OOD
detection.

Starting with pre-trained image segmentation models as
baselines, we aim to improve their performance through
task-specific enhancements, including confidence calibra-
tion and optimized training loss functions, ultimately pro-
viding insights into designing robust and efficient anomaly
detection systems for real-world road scenes.
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2. Related works

Real-time semantic segmentation requires a careful bal-
ance between computational efficiency and the ability to
capture both spatial and contextual information. In this sec-
tion, we discuss three key architectures designed with this
objective: ENet, ERFNet, and BiSeNet.

ENet (Efficient Neural Network) ENet [13] is a
lightweight encoder-decoder network designed for
resource-constrained environments. The encoder is
optimized to compress spatial information early using
a combination of downsampling and low-dimensional
feature representations. Key innovations include the use of
bottleneck modules, which reduce feature dimensionality
via 1 x 1 projections, followed by either regular, dilated, or
asymmetric convolutions (Fig. 2). The decoder, in contrast,
is minimalist, focusing solely on upsampling the encoder’s
compressed representations to produce pixel-level predic-
tions. ENet’s design emphasizes computational efficiency
by limiting the size of the decoder, making ENet suitable
for real-time applications on embedded devices.
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Figure 2. ENet bottleneck module.

ERFNet (Efficient Residual Factorized Network)
ERFNet [15] is a deep neural network designed for real-
time semantic segmentation. It builds on ENet by retaining
its encoder-decoder structure and minimal decoder, while
introducing the non-bottleneck-1D module to improve
efficiency of the residual layer (Fig. 3). These modules
use factorized 1D convolutions, significantly reducing
computational costs and number of parameters compared
to traditional 2D convolutions while maintaining high rep-
resentational power. The encoder combines these modules
with downsampling layers and dilated convolutions to
extract multi-scale features, while the lightweight decoder
focuses on upsampling using transposed convolutions
to recover spatial resolution. This architecture achieves
a strong balance between accuracy and speed, making
ERFNet ideal for real-time applications.

BiSeNet (Bilateral Segmentation Network) BiSeNet
[18] introduces a dual-path architecture to address the trade-
off between preserving spatial details and capturing a large

receptive field (Fig. 4). The Spatial Path (SP) uses three
convolutional layers with a stride of 2 to retain high spa-
tial resolution. Concurrently, the Context Path (CP), built
on lightweight backbones such as Xception, captures con-
textual information by aggressively downsampling feature
maps and applying global average pooling. To fuse the
complementary outputs of SP and CP, BiSeNet employs a
Feature Fusion Module (FFM), which selectively combines
features from both paths. Additionally, an Attention Refine-
ment Module (ARM) enhances feature representations by
focusing on relevant spatial and contextual regions. This
architecture ensures both high-resolution segmentation and
computational efficiency.

Figure 3. ERFNet non-bottleneck-1D module.
3. Methods

Various methods have been proposed for identifying
anomalous samples, leveraging the model’s predictive be-
havior and internal representations. Here, we discuss five
key methods: Maximum Softmax Probability (MSP), Maxi-
mum Logit (MaxLogit), Maximum Entropy (MaxEntropy),
Void Classifier and Mahalanobis Distance.

All methods provide pixel-wise anomaly scores s(z) €
RIZ!, where 2 € X represents an image. Anomalies corre-
spond to higher values of s(z). Z denotes the set of image
coordinates, and X is a dataset with N images. o(-) de-
notes the softmax function and f¢(z) represents the logits
for class c.

Maximum Softmax Probability (MSP) [8] The Maxi-
mum Softmax Probability (MSP) evaluates the confidence
of the semantic segmentation model based on the softmax
probabilities. The anomaly score for each pixel z € Z is
computed as:

s.(x) =1 —maxo(fI(x)). (1)

ceC

MSP assumes that the highest softmax probability corre-
sponds to the model’s confidence. Low confidence (i.e.,
low maximum probability) is interpreted as a sign of an
anomaly.

While simple and computationally efficient, MSP may
fail in cases where softmax probabilities are overconfident.
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Figure 4. BiSeNet’s dual-path architecture: Spatial Path (SP), Context Path (CP), and Feature Fusion Module (FFM).

To address this, temperature scaling [10] can be applied as
a post-processing technique to calibrate the classifier’s con-
fidence in predictions. A classifier is considered calibrated
when its predicted probabilities match the actual frequency
of correct predictions. The MSP anomaly score with tem-
perature scaling is computed for each pixel z € Z as:

sz(x) =1 - maxo(f7(2)/T), )

where T represents the temperature value.

Maximum Logit (MaxLogit) [7] The Maximum Logit
(MaxLogit) method operates on the logits directly rather
than relying on softmax probabilities. The anomaly score
is defined as:

L) =— °(x). 3

5:() = —max f(z) 3)
By avoiding softmax, MaxLogit prevents inflated confi-
dence scores, offering a computationally efficient and ef-
fective measure of anomaly likelihood.

Maximized Entropy (MaxEntropy) [3] MaxEntropy is
based on the entropy of softmax outputs. The anomaly score
is computed as:

s:(x) = =Y o(fi(x))log (o(f<(2))) - )

ceC

Entropy measures the uncertainty of predictions, with high
entropy values indicating that the model is unsure about the
class assignment, which aligns with the behavior expected
for OOD pixels. MaxEntropy provides more nuanced un-
certainty estimates compared to MSP but is computationally
more intensive.

Void Classifier In this approach, a deep neural network
f: X — RIZIXUCIHD ig trained with an additional “void”
class to model anomalies. The anomaly score for each pixel
z € Z is given by the softmax score for the void class:

s2(x) = o(£27(x)),

By explicitly modeling anomalies as the void class, this
method reduces reliance on post-hoc anomaly detection and
can be integrated into existing segmentation pipelines. Its
effectiveness depends on accurate void class annotation dur-
ing training.

recX. (5)

Mahalanobis Distance [9] The Mahalanobis Distance
calculates the distance of a pixel’s feature representation to
the nearest class distribution in the feature space. Assuming
that the features hZ~!(z) of the penultimate layer follow a
Gaussian distribution, the anomaly score is given by:

s.(x) = rcnelél (hﬁ_l(x) - ﬂC)T 7t (hg_l(x) - ﬂC) )

) ©)
where fi. and ¥ represent the mean of the features for class
c and the tied covariance, respectively. The Mahalanobis
distance captures the likelihood of the pixel belonging to a
known class, with higher values indicating anomalies.

3.1. Loss Functions

In this work, we explore the application of several loss
functions for fine-tuning a pre-trained semantic segmenta-
tion model. Below, we provide an overview of each loss
function.

Cross-Entropy Loss The cross-entropy loss is a standard
objective for classification tasks and is adapted here for se-
mantic segmentation. For a single pixel at position z € Z,



with predicted logits f¢(x) € R and ground truth label .,
the loss is:

Leg = —log (o(f2*(2))) , )

where o (f¥7(x)) = > exp(fe(z))”

Focal Loss The focal loss [0] extends the cross-entropy
loss by introducing a modulating factor to emphasize harder
examples. For a single pixel z € Z, the loss is:

EFocalLoss,z = _a(l - U(f.gz (x)))v log(o(ffz (I))), (8)

where o € [0,1] and v > 0 control the weighting of
examples and the focusing effect, respectively.

Logit Normalization The Logit Normalization (Logit-
Norm) technique [17] aims to mitigate the issue of over-
confidence in deep learning models, which often produce
highly confident predictions even for out-of-distribution
(OOD) inputs. LogitNorm modifies the traditional cross-
entropy loss by normalizing the logits, i.e., the pre-softmax
outputs of the model, to have a constant norm. The normal-
ized logits are defined as:

N fz(x)

fa(x) = . 9
1f=()]]
The cross-entropy loss is then computed as:
Ayz T
Ler.. = ~toglo(Z2 1)) (10)

where 7' is a scaling factor that modulates the magnitude
of the logit vector after normalization. This technique re-
duces overconfidence by normalizing logits to have a con-
stant norm, making the model less sensitive to large logit
values.

Enhanced Isotropy Maximization Loss The Enhanced
Isotropy Maximization Loss (IsoMax+) [12] extends the
IsoMax loss to improve out-of-distribution (OOD) detec-
tion by replacing the traditional linear transformation with
a distance-based approach. The logit for class c is defined
as the negative scaled Euclidean distance between the nor-
malized feature vector f, from the penultimate layer and the
normalized class prototype p.:

£e=—\ds| - |If. = Pell, (11)

where fz is the normalized feature vector, p. is the nor-
malized class prototype, and |d;| is a learnable scalar that
controls the scaling of distances.

The IsoMax+ loss function is then defined as:

£IsoMax+,z = —log (U(Es : fé/z)) ) (12)

where E, represents the entropic scale. IsoMax+ en-
hances isotropy in the feature space, bringing in-distribution
samples closer to their class prototypes while pushing OOD
samples away. It improves OOD detection without ad-
ditional hyperparameter tuning or external datasets. For
ERFNet, which outputs a C' x H x W tensor, the method is
adapted by reshaping and normalizing the features (B x C'x
H x W) to compute distances between pixel-level feature
vectors and class prototypes, ensuring compatibility with
ERFNet’s output while preserving IsoMax+ properties.

4. Experiments

In our experiments, we evaluate an anomaly segmen-
tation framework using inference methods like Maximum
Softmax Probability (MSP), Maximum Logit (MaxLogit),
Maximum Entropy (MaxEntropy), and Mahalanobis dis-
tance. We also explore the effects of Temperature Scal-
ing for calibration and the void class from the Cityscapes
dataset on anomaly detection. Additionally, we test various
loss functions, including Focal Loss, Cross-Entropy Loss,
IsoMax+, and LogitNorm, to enhance performance.

Experiments are conducted on benchmark datasets such
as RoadAnomaly, Fishyscapes, and SegmentMelfYou-
Can, using pre-trained models like ERFNet, ENet, and
BiSeNetV1.

4.1. Metrics

We evaluate performance using three metrics: Area un-
der the Precision-Recall Curve (AuPRC), False Positive
Rate at 95% True Positive Rate (FPR95), and Mean Inter-
section over Union (mlIoU).

The AuPRC metric quantifies how well the anomaly
scores separate anomalies from non-anomalies. The metric
is threshold-independent, meaning it considers how preci-
sion and recall change as the threshold for classifying points
as anomalies is varied. A higher AuPRC indicates better
separation between anomalies and non-anomalies, with a
value closer to 1 being ideal.

The FPR95 metric evaluates the false positive rate when
the true positive rate is 95%. The positive class is defined
as “anomaly”, and false positives are non-anomaly pixels
incorrectly predicted as anomalies.

The mloU metric quantifies the overlap between pre-
dicted and ground truth segmentation masks. It is defined
as:

< TP,

1
IoU = —
o C;TPC+FPC+FNC’

13)

where C' is the number of classes, and TP,, FP., and FN,
are the true positive, false positive, and false negative pixels
for class c, respectively. The mloU values reported in the
tables of this paper (1, 2, 3, 4) refer to a mloU evaluation
over the Cityscapes dataset [4].



4.2. Datasets and Benchmarks

Here, we describe the main datasets and benchmarks rel-
evant to our work. In our experiments we have only used
the validation splits of these benchmark datasets, which are
publicly available for download but contain a limited num-
ber of different road surfaces and diverse obstacle types than
the whole dataset benchmarks.

Cityscapes [4] is a widely-used dataset for semantic seg-
mentation in urban driving scenarios. It consists of 5,000
high-resolution images with dense pixel-level annotations
across 19 semantic classes, captured in diverse European
cities. Cityscapes provides a strong foundation for segmen-
tation models, particularly for road scene understanding.

Fishyscapes [1] is a benchmark designed to evaluate
anomaly detection in semantic segmentation. It includes
three datasets, but only two were used in our work: FS
Static and FS Lost and Found. FS Static is based on the
Cityscapes validation set and is divided into a public vali-
dation set of 30 images with 30 OOD objects overlaid, and
a hidden test set of 1000 images. F'S Lost and Found is de-
rived from the Lost and Found dataset [14] and consists of
100 validation images and 275 test images with pixel-level
annotations of small, anomalous objects on the road.

RoadAnomaly [11] focuses on detecting anomalies in
real-world road scenes. This dataset features 60 images
with pixel-level annotations with various anomalous ob-
jects, such as animals or atypical vehicles, appearing in un-
predictable locations within the image, making it a chal-
lenging test for anomaly segmentation models.

SegmentMeIfYouCan [2] is a benchmark for anomaly
segmentation that introduces two key datasets: Road-
Anomaly21 and RoadObstacle2]. RoadAnomaly2l con-
tains 100 real-world test images and 10 validation images
where anomalies can appear anywhere, emphasizing gen-
eral anomaly detection. RoadObstacle2] consists of 327
test images and 30 validation images, restricting the region
of interest to the drivable road area, and focuses on the de-
tection of potential hazards such as fallen objects, with an-
notations tailored for obstacle segmentation tasks. In both
datasets, the pixel-level annotations include three classes:
1) anomaly / obstacle, 2) not anomaly / not obstacle, and 3)
void.

4.3. Implementation details

In this section, we detail our implementation protocol for
each model. We used the pre-trained versions of ERFNet',
ENet?, and BiSeNetV1? available in their official GitHub
repositories. All models were pre-trained on the Cityscapes
dataset with 19 semantic classes.

lhttps://github.com/Eromera/erfnetipytorch
Zhttps://github.com/davidtvs/PyTorch—ENet
3https://qithub.com/CoinCheunq/BiSeNet

For the void classifier experiment (Section 4.6), we fine-
tuned the models for 20 epochs to include the void class
in the anomaly score by freezing all layers except the final
one. Similarly, for the additional losses experiment (Sec-
tion 4.7), we fine-tuned ERFNet under the same conditions
using different loss functions.

We pre-processed the data by resizing each image to
512 x 1024 pixels. The data augmentations and hyperpa-
rameters were adopted directly from the original papers to
ensure consistency with the authors’ implementations. Be-
low, we detail the specific settings and configurations used
for each model.

For the ERFNet model, we used the Adam optimizer
with an initial learning rate of 5 x 10~5 and a weight de-
cay of 10~%. The learning rate was adjusted using a Lamb-
daLR scheduler based on Equation 14. To study the effect
of various losses and OOD methods, we experimented with
Focal Loss (7 = 0, « = 1), Cross Entropy Loss, IsoMax+
(Es = 10), and LogitNorm (without temperature scaling).

For the ENet model, we used the Adam optimizer with
an initial learning rate of 5 x 10~° and a weight decay of
0.0002. We adopted a step learning rate scheduler with a
decay by v = 0.1 every 7 epochs. The loss function used
for ENet was the Cross Entropy Loss. To account for class
imbalances in the Cityscapes dataset, we calculated dataset
weights using the function described in the original ENet
paper and provided them as input to the Cross Entropy Loss.
For ERFNet, we used the Cityscapes dataset weights pro-
vided in the official GitHub repository.

For the BiSeNetV1 model, we used the SGD optimizer
with an initial learning rate of 2.5 x 1073, a momentum
of 0.9, and a weight decay of 10~%. The learning rate
was scheduled using the LambdalLR approach, as defined in
Equation 14. The loss function is composed of three sepa-
rate terms: one for the main output and two for the auxiliary
outputs of the BiSeNetV1 architecture, all based on Ohem
Cross Entropy loss [16] with a threshold of 0.7, in line with
the original implementation.

The Lambda LR scheduler is defined as:

0.9
A(t) = (1 - t_Tl) (14)

where t is the epoch and 7' is the total number of epochs.

4.4. Baselines

To compare the effect of different methods (MSP,
MaxLogit, MaxEntropy and Mahalanobis) for anomaly seg-
mentation, we evaluated the performance of an ERFNet
model pre-trained with 19 Cityscapes classes on differ-
ent datasets: RoadAnomaly, RoadAnomaly21, RoadOb-
stacle21, Fishyscapes Static, Fishyscapes Static Lost and
Found. In particular, to compute the Mahalanobis method
we have implemented an initial calculation of the mean and
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Table 1. Performance results of ERFNet across various benchmark datasets for different metrics used as baselines. The table reports mIoU
(higher is better), AuPRC (higher is better), and FPR9S5 (lower is better) metrics, evaluated for different methods: MSP, MaxLogit, Max
Entropy, Mahalanobis. Results are evaluated on SMIYC RA-21, SMIYC RO-21, FS L&F, FS Static, and Road Anomaly datasets, and the
best performance for each dataset and metric is highlighted in bold black.

Method | Cityscapes | SMIYCRA-21 | SMIYCRO-21 | FS L&F | FS Static | Road Anomaly

| mloUt | AuPRCT FPR95| | AuPRCT FPR95| | AuPRC+ FPR95| | AuPRCT FPR95| | AuPRCT FPR9S |
MSP 72.20 29.10 62.51 2.71 64.97 1.75 50.76 7.47 41.82 12.43 82.49
MaxLogit 72.20 38.32 59.34 4.63 48.44 3.30 45.49 9.50 40.30 15.58 73.25
Max Entropy 72.20 31.01 62.59 3.05 65.60 2.58 50.37 8.83 41.52 12.68 82.63
Mahalanobis 72.20 30.88 74.49 9.64 52.43 2.94 55.23 8.93 39.34 13.53 79.63

tied covariance matrix of each output of the ERFNet model
on the Cityscapes dataset.

The performance results reported in Table 1 show that
the MaxLogit method generally outperforms all other meth-
ods, because it can effectively distinguish between classes
that are very similar. In contrast, the MSP method, which
relies on Softmax, tends to reduce the logits, making the
differences between classes less pronounced and harder to
differentiate.

The second best method is Mahalanobis, which outper-
forms the MSP method because it provides a structured way
to detect anomalies, even though is constrained by the Gaus-
sian assumption. Despite this, the computational cost of
Mahalanobis is not negligible; it requires the estimation and
inversion of covariance matrices, which can be expensive,
especially for high-dimensional feature spaces.

Overall, the best method is MaxLogit for both its sim-
plicity and performance. Figure 5 provides a qualitative
comparison of the anomaly detection performance of the
different methods on an image from the Road Anomaly
dataset.

4.5. Temperature scaling

In this experiment, we implemented Temperature Scal-
ing in the MSP method using Equation 2 and we stud-
ied the effect of different temperature values on benchmark
datasets. We have had trials with different temperatures in
a range between 0.5 and 2.0. The results reported in Ta-
ble 2 show that MSP with a temperature of 1.85 outperforms
all other temperature values, indicating that the network is
overconfident in the results and requires calibration.

Figure 6 provides a qualitative comparison of the
anomaly detection performance of different temperature
values on an image from the Road Anomaly dataset.

4.6. Void classifier

In this experiment, we fine-tuned ERFNet, ENet and
BiSeNetV1 by enabling the void output channel, represent-
ing the 20th class in the Cityscapes dataset, typically used
for background or unannotated areas. We reinterpreted it as
an anomaly class, encompassing all elements outside of the

19 predefined Cityscapes categories.

The three baseline models were pre-trained on
Cityscapes with the cross-entropy loss, ignoring the
void class. To adapt them, we fine-tuned for 20 epochs on
the Cityscapes dataset setting the weight of the void class to
1, in order to approximate an anomaly distribution using the
dataset’s void regions directly during training, obtaining the
Void Classifier [2] defined in section 3. During inference,
anomaly detection was performed by isolating the void
output class and treating it as an anomaly score.

Table 3 presents the performance of networks trained as
Void Classifiers, tested on various benchmark datasets, with
Figure 7 showcasing a qualitative comparison on an image
from the Road Anomaly dataset.

BiSeNet consistently achieves the highest AuPRC scores
across all datasets, notably outperforming others on SMIYC
RA-21 (46.79%) and FS Static (42.52%), demonstrating su-
perior precision and recall in detecting void classes.

On the other hand, ERFNet achieves the best FPR95 re-
sults on most datasets, excelling in FS L&F (13.17%), re-
flecting its robustness in minimizing false positives.

Comparing ERFNet trained as a Void Classifier (first row
of Table 3) with baseline methods (Table 1), the Void Clas-
sifier generally performs worse, except for improvements in
FS L&F (FPR95) and FS Static (AuPRC). Also the mloU is
slightly lower, suggesting that the model may benefit from
further fine-tuning.

4.7. Effect of Training Loss function

In this experiment, we fine-tuned the pre-trained ERFNet
model with various loss functions to evaluate their impact
on training dynamics. We conducted six experiments, com-
paring individual and combined effects of common losses
(cross-entropy and focal loss) and outlier detection-specific
techniques (logit normalization and IsoMax+). First, as
a baseline, the pre-trained ERFNet model was evaluated
using cross-entropy loss without modifications. Next, the
model was fine-tuned with focal loss alone to assess its stan-
dalone performance. Finally, we explored combinations of
logit normalization or IsoMax+ with cross-entropy or focal
loss to evaluate their synergistic effects. The focal loss was



Table 2. Performance results of ERFNet across various benchmark datasets for the MSP method with various temperatures.

Method | Cityscapes | SMIYCRA-21 | SMIYCRO-21 | FS L&F | FS Static | Road Anomaly
| mIoUt | AuPRCT FPR95| | AuPRCt FPR95| | AuPRCT FPR95| | AuPRC+ FPRO5| | AuPRCT FPR9S |
MSP 72.20 29.10 62.51 2.71 64.97 1.75 50.76 7.47 41.82 12.43 82.49
MSP (¢t = 0.5) 72.20 27.06 62.73 242 63.23 1.28 66.74 6.60 43.48 12.19 82.02
MSP (t = 0.75) 72.20 28.16 62.48 2.57 64.05 1.49 51.85 6.99 42.49 12.32 82.28
MSP (t =1.1) 72.20 29.41 62.59 2.77 65.52 1.86 50.39 7.69 41.59 12.47 82.62
MSP (t = 1.85) 72.20 30.60 64.72 3.01 70.41 2.57 48.65 9.26 40.98 12.65 84.14
Table 3. Performance results across datasets of different networks trained as Void Classifiers.
Network ‘ Cityscapes ‘ SMIYC RA-21 ‘ SMIYC RO-21 ‘ FS L&F ‘ FS Static ‘ Road Anomaly
\ mloU 1 \ AuPRC T FPR95 | \ AuPRC 1 FPR95 | \ AuPRC 1 FPR95 | \ AuPRC 1T FPR95 | \ AuPRC 1 FPR95 |
ERFNet 71.94 20.96 70.65 0.95 99.70 11.95 13.17 19.09 54.49 9.62 89.60
ENet 34.48 12.82 96.94 0.66 99.80 2.27 56.55 11.04 76.59 12.43 91.83
BiSeNet 67.10 46.79 80.71 6.20 99.58 16.80 70.48 42.52 57.13 19.54 93.59

used as a straightforward substitution for cross-entropy loss
in these experiments, without requiring additional modifi-
cations to the methods described earlier in Section 3.1.

Table 4 reports the results of this experiment. Addi-
tionally, Figure 8 provides a qualitative comparison of the
anomaly detection performance on an image from Road
Anomaly dataset.

Overall, IsoMax+ (IMP) loss and Logit Normalization
(LN) show promise in enhancing anomaly detection, but
their effectiveness varies depending on the dataset and
method.

For both the MSP and MaxEntropy methods, IMP com-
bined with Cross Entropy (CE) achieves the best results.
This aligns with the design of IMP, which is inherently com-
patible with CE due to its cross-entropy-based formulation.
Interestingly, incorporating Logit Normalization (LN) with
CE or Focal Loss (FL) yields mixed results, with improve-
ments on datasets like FS Static but declines on SMIYC
RA-21 and RO-21. These findings suggest that LN’s reg-
ularization effect is sensitive to the characteristics of the
dataset and could disrupt valuable information embedded in
raw logits. The combination of IMP with FL generally un-
derperforms compared to FL alone, suggesting that IMP’s
isotropy-based optimization may conflict with FL’s focus
on hard-to-classify examples.

The MaxLogit method stands out as the overall best-
performing approach. Within MaxLogit, IMP+CE consis-
tently achieves strong results across most datasets and this
result reinforces the compatibility between IMP and CE.
However, adding LN to either CE or FL in MaxLogit typ-
ically degrades performance, likely because MaxLogit re-
lies on raw logits, and LN’s normalization constrains their
range, potentially reducing effectiveness.

The Mahalanobis method shows strong results with
traditional loss functions like CE and FL, particularly
for FPROS5 metrics. FL stands out as particularly ef-

fective, achieving the best overall results across many
datasets. However, combining IMP with CE yields poor
outcomes, likely due to incompatibilities between Ma-
halanobis’s distance-based anomaly detection and IMP’s
isotropy-focused design. Once again, the effect of LN is
highly variable depending on the dataset.

An interesting observation from Figure 8 is that IsoMax+
tends to produce smoother and more calibrated predictions,
suggesting an enhancement in the model’s ability to express
uncertainty, which is critical for reliable anomaly detection.
The lower mloU values observed for IsoMax+ (27.73 and
17.79) indicate the need for additional fine-tuning due to
the introduction of new parameters in the final layer.

While both IMP and LN offer improvements for out-of-
distribution detection, their effectiveness varies depending
on the method and dataset. IMP+CE is the most consistent
and effective combination, while LN’s impact varies based
on the specific characteristics of the dataset.

4.8. Performance comparison

The performance comparison between the analyzed net-
works, measured as the average forward time on a T4 GPU
using the Cityscapes dataset, highlights the critical role of
computational efficiency in real-time semantic segmenta-
tion. As can be seen in Table 5 BiSeNet demonstrates
the shortest forward time (18.16 ms) and thus the high-
est frames-per-second (55.08), significantly outperforming
ERFNet and ENet in processing speed. This metric is
crucial because real-time applications such as autonomous
driving demand low-latency segmentation to ensure timely
and accurate scene understanding. Faster networks like
BiSeNet can provide the necessary responsiveness while
maintaining segmentation quality, making them more suit-
able for real-world deployments.



Table 4. Performance results of ERFNet fine-tuned with different combinations of methods and loss functions: Cross Entropy (CE), Focal
Loss (FL), Logit Normalization (LN), and IsoMax+ Loss (IMP). The best performance for each dataset and metric is highlighted in bold
black, while the best overall results across all metrics are highlighted in bold green.

Method Loss | Cityscapes | SMIYCRA-21 | SMIYCRO-21 | FS L&F | FS Static | Road Anomaly
| mloUt | AuPRCT FPR95| | AuPRCT FPR95| | AuPRC1 FPR95| | AuPRCT FPR95 | | AuPRCT FPRYS |
CE 72.20 29.10 62.51 271 64.97 1.75 50.76 7.47 41.82 12.43 82.49
MSP FL 72.20 27.94 66.24 2.94 64.90 2.10 47.66 7.70 41.84 12.23 82.50
LN +CE 71.70 27.33 63.32 2.09 86.41 1.97 46.74 7.62 37.54 12.58 80.56
IMP + CE 27.73 37.06 52.95 3.81 26.68 091 58.68 12.21 36.75 19.66 65.20
LN +FL 71.74 27.49 61.59 2.09 83.61 1.84 47.77 7.95 36.25 12.37 79.61
IMP + FL 17.79 33.55 63.28 3.52 45.70 0.87 51.02 4.18 63.43 11.99 78.85
CE 72.20 38.32 59.34 4.63 48.44 3.30 45.49 9.50 40.30 15.58 73.25
MaxLogit FL 72.20 39.13 60.50 6.37 33.73 3.54 47.32 8.89 36.77 18.19 70.89
LN +CE 71.70 34.10 57.83 3.26 79.69 3.86 40.27 9.63 34.68 14.75 73.84
IMP + CE 27.73 41.05 50.93 6.56 25.49 0.80 74.15 14.98 34.03 19.35 63.76
LN +FL 71.74 34.17 56.10 3.29 76.80 3.51 41.07 10.15 33.26 14.61 73.05
IMP + FL 17.79 35.03 62.71 5.24 52.61 0.77 41.73 4.30 61.55 12.13 79.81
CE 72.20 31.01 62.59 3.05 65.60 2.58 50.37 8.83 41.52 12.68 82.63
Max Entropy FL 72.20 29.58 66.58 3.23 65.62 341 47.23 9.33 41.45 12.57 82.77
LN + CE 71.70 28.31 63.20 224 87.35 3.01 46.40 9.03 37.17 12.65 80.79
IMP + CE 27.73 34.47 49.91 20.40 15.40 1.00 60.02 11.73 52.73 15.65 75.13
LN + FL 71.74 28.55 61.50 223 84.60 2.75 47.41 9.42 35.85 12.42 79.87
IMP + FL 17.79 22.95 61.24 3.58 68.17 0.68 52.87 3.48 62.38 11.08 80.36
CE 72.20 30.88 74.49 9.64 52.43 2.94 55.23 8.93 39.34 13.53 79.63
. FL 72.20 3223 55.54 5.40 14.61 0.79 67.70 474 55.86 28.63 60.04
Mahalanobis
LN +CE 71.70 36.77 56.59 7.36 35.98 1.40 66.92 461 60.86 19.66 62.44
IMP + CE 27.73 19.80 89.24 2.52 72.14 0.16 99.36 4.14 92.70 7.47 91.20
LN +FL 71.74 37.73 56.04 7.29 33.11 1.31 67.38 4.66 61.41 19.45 60.28
IMP + FL 17.79 30.28 71.60 3.85 94.34 0.73 55.08 2.00 77.14 10.82 89.65

Table 5. Average forward time comparison across networks, com-
puted on the Cityscapes dataset using a T4 GPU

ERFNet ENet BiSeNet
Forward time [ms] 25.98 42.89 18.16
FPS [Hz] 38.49 23.32 55.08

5. Conclusion

This paper explored the effectiveness of real-time
anomaly segmentation methods in road scenes, focusing
on evaluating pre-trained models (ENet, ERFNet, and
BiSeNet) and enhancing them with various techniques, such
as temperature scaling, void classification, and advanced
loss functions.

MaxLogit emerged as the most robust method for
anomaly detection, consistently outperforming alternatives
due to its ability to effectively distinguish between simi-
lar classes. Additionally, temperature scaling proved to be
a valuable enhancement, improving the detection perfor-
mance with optimal results achieved at a temperature value
of 1.85. This indicates the importance of calibration in mit-
igating overconfidence in model predictions.

Incorporating the void class into fine-tuned models en-
abled explicit anomaly modeling, with BiSeNet demon-
strating superior precision-recall metrics and ERFNet ex-

celling at minimizing false positives. These results under-
line the benefits of leveraging existing dataset structures to
enhance anomaly detection capabilities. Moreover, experi-
menting with advanced loss functions revealed that the En-
hanced Isotropy Maximization Loss (IsoMax+) combined
with Cross-Entropy Loss improved out-of-distribution de-
tection performance, though its effectiveness varied across
datasets, emphasizing the need for task-specific optimiza-
tion.

From a computational perspective, BiSeNet exhibited
the highest efficiency, achieving the fastest processing
speeds while maintaining competitive segmentation accu-
racy. This makes it particularly suitable for real-time appli-
cations such as autonomous driving.

This study provides valuable insights into designing ro-
bust and efficient anomaly segmentation systems for real-
world scenarios. Future research could focus on refining
model reliability through advanced calibration techniques
and metrics, expanding training datasets to enhance robust-
ness in diverse scenarios, and adopting pruning and quan-
tization methods to reduce model size and latency. Addi-
tionally, leveraging self-supervised pre-trained models and
other foundational backbones could provide stronger gen-
eralization priors, improving performance across a wider
range of environments.
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Appendix A. Visualization

Image Ground Truth MSP MaxLogit MaxEntropy Mahalanobis

Figure 5. Visual comparison of baseline anomaly segmentation methods applied with ERFNet on the Road Anomaly dataset. The image
on the left shows the input from the dataset, followed by the ground truth segmentation. The remaining columns display the outputs of
MSP, MaxLogit, MaxEntropy, and Mahalanobis methods. The heatmap color scale ranges from blue (in-distribution) to red (anomaly).

Image Ground Truth t=0.5 t=0.75 t=1.1 t=1.85

Figure 6. Visual comparison of anomaly segmentation using ERFNet and the MSP method with different temperature scaling values on the
Road Anomaly dataset. The image on the left shows the input from the dataset, followed by the ground truth segmentation. The remaining
columns display the outputs of MSP with different temperature values.

Image Ground Truth enet erfnet bisenet

Figure 7. Visual comparison of anomaly segmentation with the three analyzed networks fine-tuned as void classifiers, applied on the Road
Anomaly dataset. The image on the left shows the input from the dataset, followed by the ground truth segmentation. The remaining
columns display the outputs of the networks fine-tuned as void classifiers.
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Image Ground Truth MSP MaxLogit MaxEntropy Mahalanobis

Cross Entropy Loss

Image Ground Truth MSP MaxLogit MaxEntropy Mahalanobis

Focal Loss

Image Ground Truth MSP MaxLogit MaxEntropy Mahalanobis

Ground Truth Mahalanobis

IsoMax+ with Cross Entropy Loss

Image Ground Truth MSP MaxLogit MaxEntropy Mahalanobis

Image Ground Truth MSP MaxLogit MaxEntropy Mahalanobis
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IsoMax+ with Focal Loss

Figure 8. Visual comparison of anomaly segmentation methods and loss functions on the Road Anomaly dataset. The image on the left
shows the input from the dataset, followed by the ground truth segmentation. The remaining columns display the outputs of MSP, MaxLogit,
MaxEntropy, and Mahalanobis methods for each row. Rows correspond to different loss functions used during training: CrossEntropy,
Focal Loss, LogitNorm with CrossEntropy, IsoMax+ with CrossEntropy, LogitNorm with Focal Loss, and IsoMax+ with Focal Loss.
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