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Abstract—Time-series forecasting is essential in financial
markets, guiding decision-making in trading and risk
management. This paper examines the application of Chronos,
a deep learning framework originally designed for probabilistic
univariate forecasting, to financial data. We begin by fine-tuning
Chronos on financial time series to evaluate its performance
improvements over a zero-shot approach. Next, we explore
various strategies for adapting Chronos to multivariate
forecasting to better capture key covariates. These include
preprocessing techniques that transform multivariate data into
a univariate representation and a post-processing approach
using a Multi-Layer Perceptron (MLP) to refine Chronos’
predictions. Experiments on historical stock market data,
specifically Apple Inc. (AAPL), demonstrate that fine-tuning
Chronos significantly enhances forecasting accuracy. Among
preprocessing methods, Support Vector Regression (SVR)
provides the best performance in transforming multivariate
inputs. Furthermore, post-processing with an MLP further
refines predictions, leading to substantial error reductions. To
assess practical applicability, we implement a trading bot that
utilizes the predicted stock prices for decision-making. The
trading simulations reveal that fine-tuning Chronos on financial
data combined with MLP post-processing outperforms both the
zero-shot approach and a simple buy-and-hold strategy. These
findings underscore the importance of integrating deep learning
techniques and multivariate modeling in financial time-series
forecasting.

The source code of this project is
https://github.com/JackBstn/Chronos_multivariate,

available at

I. PROBLEM STATEMENT

Time-series forecasting is a fundamental problem in many
domains, including finance, weather prediction, and supply
chain management. It involves predicting future values of a
sequence based on its past observations, often using statistical
or machine learning models. Traditional approaches often
focus on univariate forecasting, where only past values of the
target variable are used for prediction. However, in many real-
world applications, multiple interdependent variables evolve
over time, and leveraging these additional covariates can
significantly enhance predictive performance. In this paper,
we focus on financial forecasting, a particularly challenging
task due to the high volatility and complex dependencies in
stock price movements, where the consideration of multiple
covariates is essential.

Chronos [1]] is a deep learning framework designed for prob-
abilistic univariate time-series forecasting, using pretrained
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Fig. 1. High-level depiction of Chronos.

transformer-based architectures, achieving competitive zero-
shot forecasting on unseen datasets.

In this work, we explore the extension of Chronos to
multivariate forecasting by incorporating additional covariates
to improve the estimation of the response variable. Given a
time-series dataset with multiple dimensions, let X; € R?
denote the feature vector at time t, where one dimension
represents the response variable y;, and the remaining d — 1
dimensions are covariates:

_ 1,2 d—1
X: ={y,xs, @3, .., xy )

The forecasting task consists of predicting the future values
of y; given past observations of X, i.e.,

Yc+1:.C+H = f(XI:C) = f(X17 "'7XC)7

where C'is the context size and H is the forecasting horizon.

We first explore fine-tuning Chronos solely on the response
variable y; to assess whether this improves performance. Then,
to incorporate covariates into Chronos-based forecasting, we
explore different strategies. The first method transforms the
multivariate time-series into a univariate representation using
simple statistical methods before applying Chronos. An alter-
native strategy applies Chronos independently to each dimen-
sion of X;, and a simple Multi-Layer Perceptron (MLP) is
used to combine the results and reconstruct the final prediction.

Finally, we test these methodologies in a financial setting,
where the forecasting output is utilized within a simple greedy
trading bot. The effectiveness of each approach is evaluated
using standard regression metrics and overall trading perfor-
mance.


https://github.com/JackBstn/Chronos_multivariate

II. METHODOLOGY

As previously discussed, in our work we employed Chronos
model for time-series forecasting. This task involves using
historical data from a quantity of interest (typically real-
valued) to predict its future values. Formally, given a uniformly
spaced time series ®1.c = [z1,...,Z¢], the goal is to predict
the joint distribution of the next H steps, p(xct1.0+H|T1.0)-
In the case of univariate forecasting, as in the original Chronos
model, the observations are scalars, i.e., x; € R for all 4.

Figure[I] reports a high-level depiction of Chronos. Chronos
tokenizes time-series values using scaling and quantization
into a fixed vocabulary, enabling it to leverage transformer-
based language models like TS [2]]. The model is trained using
a cross-entropy loss and benefits from large-scale pretraining
on both real and synthetic datasets. During inference, Chronos
autoregressively predicts future values by sampling from its
learned distribution. This approach allows Chronos to achieve
strong performance on in-domain data and competitive zero-
shot forecasting on unseen datasets. The output of Chronos
consists of multiple probabilistic forecasts, typically capturing
an 80% prediction interval, meaning that the true future values
are expected to fall within this range with high confidence.

In our experiments, we do not modify the core Chronos
pipeline. Instead, we apply fine-tuning for the financial do-
main, along with preprocessing and post-processing techniques
to adapt it for multivariate forecasting. The details of these
experimental adaptations are described in the next section.

III. EXPERIMENTS

In this section, we aim to explore the application of Chronos
to financial data. Our goal is to assess its performance
in forecasting stock market trends and investigate possible
adaptations to enhance its predictive capabilities. We conduct
experiments using historical stock market data from Yahoo
Finance, specifically focusing on Apple Inc. (AAPL), which
includes key market variables: Open, High, Low, Volume, and
Close prices. The Close price serves as the target variable,
while the other features act as covariates to enhance predictive
performance.

In all our experiments, during validation of performance,
Chronos model is provided with context data from January 1,
2024, to March 15, 2024, and is then used to predict stock
prices for the following 10 days.

We perform our experiments on Google Colab, utilizing a
T4 GPU for accelerated computation. The original implemen-
tation of Chrono was used. For the neural network (NN)
components, we leverage PyTorch, while Matplotlib is used for
visualizations and plotting. Performance metrics are computed
using Scikit-learn (sklearn).

We evaluate our models using standard forecasting metrics
[3]. Mean Squared Error (MSE) and Root Mean Squared
Error (RMSE) measure absolute error magnitudes, with RMSE
providing a more interpretable scale. Mean Absolute Per-
centage Error (MAPE) assesses relative error in percentage

Uhttps://github.com/amazon-science/chronos-forecasting

terms, making it useful for understanding proportional devi-
ations. Lastly, Mean Absolute Scaled Error (MASE) offers
a robust alternative, especially for comparing performance
across different datasets. Lower metric values indicate better
performance.

A. Chronos Fine-tuning

In this experiment, we explore fine-tuning the Chronos
forecasting model on financial time series data. The goal is to
assess whether adapting Chronos to a specific stock (AAPL)
can improve its predictive performance and to examine if this
fine-tuning generalizes to other stocks (e.g., GOOGL).

The fine-tuning process is performed using historical stock
data from Yahoo Finance, spanning 10 years (2013-2023).
We focus on the Close prices of AAPL and configure the
training with a learning rate of 0.001 while experimenting with
two training step configurations: 1000 and 10000 epochs. The
training loss during training epochs is reported in Figure [6]

The performance of the fine-tuned model is compared
against a zero-shot model using the metrics presented before
(MSE, RMSE, MAPE, MASE), both on the AAPL stock,
which is used for training, and to the GOOGL stock in order
to assess models’ generalization in the financial domain.

TABLE I
PERFORMANCE OF CHRONOS ZERO-SHOT VS. FINE-TUNED ACROSS
TRAINING SIZES AND TEST TICKERS.

Configuration MSE|] RMSEJ] MAPE| MASE]
AAPL
Zero-Shot 5.5113 2.3476 1.0250 1.0758
Fine-Tuned (1000) 5.7938 2.4070 0.8762 0.9238
Fine-Tuned (10000)  14.4451 3.8007 1.5837 1.6626
GOOGL
Zero-Shot 43.4885 6.5946 4.1831 3.3841
Fine-Tuned (1000) 17.8674 4.2270 2.7398 2.2124
Fine-Tuned (10000)  7.8661 2.8046 1.6938 1.3618

The results reported in Table [] show that for AAPL, fine-
tuning Chronos for 1000 epochs significantly reduces all
error metrics compared to the zero-shot model, indicating
that focused training on a single stock can capture its unique
dynamics effectively. However, extending the fine-tuning to
10000 epochs leads to a decline in performance relative to
the 1000-epoch configuration, which suggests that the model
starts to overfit the AAPL training data.

For GOOGL, fine-tuning on AAPL significantly improved
performance, with error metrics dropping further as training
extends to 10000 epochs. Despite potential overfitting on
AAPL, the model appears to have captured latent market pat-
terns that generalize well to GOOGL, enhancing its predictive
accuracy.

The forecasting plots in Appendix confirm that fine-
tuning enhances prediction accuracy compared to the zero-
shot approach. For AAPL, fine-tuning with 1000 epochs
yields forecasts that closely align with actual prices, while
for GOOGL, the best results are achieved with 10000 epochs.



However, for both stocks, fine-tuning with 10000 epochs
reduces model uncertainty, as reflected in the narrowing 80%
prediction interval.

B. Preprocessing Methods for Multivariate-to-Univariate
Transformation

To adapt Chronos for multivariate forecasting, we explore
preprocessing techniques that transform multivariate input into
a univariate representation before applying Chronos. These
methods fall into two categories: simple statistical transfor-
mations and ML-based approaches.

a) Simple Statistical Methods: We consider basic trans-
formations that reduce the multivariate time-series to a single-
dimensional representation:

o Arithmetic Mean: Computes the simple average of all
covariates at each time step.

o Principal Component Analysis (PCA): Projects the
multivariate series into its first principal component.

o Weighted Sum: Applies fixed weights to each covariate
and sums them to obtain a univariate series. Different
weight combinations were tested and the best one was
selected.

b) ML-Based Methods: We also investigate data-driven
transformations using machine learning:

o Linear Regression: Learns a linear combination of co-
variates to predict the target variable.

« Random Forest: Uses an ensemble of decision trees to
model relationships in the multivariate data.

o Support Vector Regression (SVR): Employs a kernel-
based regression approach to capture non-linear depen-
dencies.

After applying these transformations, we applied Chronos
on the resulting univariate series and evaluate forecasting
performance.

Tables and Table present the results for simple
statistical methods and ML-based transformations respectively.
In both tables, “Zero-Shot” refers to predictions made by
Chronos without any modifications applied, using only the
target variable “Close”.

TABLE 11
COMPARISON OF SIMPLE PREPROCESSING METHODS FOR CHRONOS
FORECASTING.
Method MSE| RMSE| MAPE| MASE]
Zero-Shot 21.6738 4.6555 1.7280 1.6963
Weighted Sum 9.4147 3.0683 2.3355 2.5822
Arithmetic Mean 5.0647 2.2505 1.2343 1.3786
PCA 11.5545 3.3992 1.9314 3.2845

The results demonstrate that all preprocessing techniques
significantly reduced forecasting errors across all metrics com-
pared to the baseline “Zero-Shot”. Arithmetic Mean achieved
the best performance among simple methods. On the other
hand, for ML-based approaches, Support Vector Regression
(SVR) outperformed other models, achieving also the overall
best results.

TABLE III
COMPARISON OF ML-BASED PREPROCESSING METHODS FOR CHRONOS
FORECASTING.

Method MSE| RMSE| MAPE| MASE]|
Zero-Shot 21.6738 4.6555 1.7280 1.6963
Linear Regression ~ 9.8389 3.1367 2.3248 2.2640
Random Forest 6.1217 24742 1.3226 1.4692
SVR 4.9271 2.2197 1.1278 1.5331

The forecasting plots illustrating the results of different pre-
processing methods are reported in Appendix [B] As observed,
the Chronos 80% prediction interval shrinks significantly
across all preprocessing methods compared to the baseline
“Zero-shot”, with the exception of Weighted Sum (Figure
and Linear Regression (Figure [I0). This suggests that pre-
processing techniques generally help Chronos generate more
confident and stable forecasts by effectively incorporating
multivariate information.

These findings suggest that integrating additional infor-
mation from covariates provides crucial insights that cannot
be extracted using only the target variable. Therefore, an
adaptation of Chronos to multivariate forecasting becomes
necessary. This experiment shows that transforming a mul-
tivariate problem into a univariate representation through pre-
processing is a viable and effective strategy, allowing Chronos
to adapt successfully to multivariate forecasting and achieve
significantly improved results.

C. Post-processing using MLP for Multivariate-to-Univariate
Transformation

To further enhance Chronos’ forecasting capabilities, we ex-
plore a post-processing approach that leverages a Multi-Layer
Perceptron (MLP) to refine predictions. Unlike preprocessing
methods that transform input data before applying Chronos,
this approach focuses on improving Chronos’ predictions by
aggregating them into a single final forecast for the target
variable—the next day’s closing price.

The approach consists of applying Chronos independently
to each dimension of the multivariate time series to generate
separate predictions. These predictions are then used as input
features for an MLP, which learns to merge them into a single
refined forecast of the next day’s closing price.

The training dataset is generated by applying a sliding
window across a specified data interval. For each window,
Chronos is used to predict the next day’s value for each
covariate, and the true value of the response variable at that
time is used as the label. These labeled predictions for each
covariate then serve as inputs to the MLP.

The MLP is designed with three fully connected layers,
where the input layer accepts Chronos’ multivariate predic-
tions as features, then there are two hidden layers that utilize
ReLU activation functions and dropout regularization, and at
the end there’s the output layer, that produces a single scalar
value representing the refined closing price forecast.



The network is trained with a learning rate of 0.001 and a
weight decay of 4 x 107°. The learning rate follows a step
decay schedule with step sizes of {150, 300, 600} epochs and a
decay factor of 0.1. The network consists of two hidden layers
with 128 and 64 units, respectively, and is trained using Mean
Squared Error (MSE) loss and an Adam optimizer. A learning
rate scheduler with step-wise decay and early stopping with
a patience of 100 epochs are applied to prevent overfitting.
The maximum number of training epochs is set to 1000.
The training and validation loss during training is reported
in Figure [14]

We evaluate the performance of Zero-Shot Chronos versus
Chronos combined with MLP. The results are presented in
Table and the plot is reported in Figure

TABLE IV
COMPARISON OF CHRONOS WITH AND WITHOUT MLP POST-PROCESSING.

Method MSE| RMSE| MAPE] MASE]
Zero-Shot 109.9269  10.4846  5.1278 53112
Chronos + MLP  5.8794 2.4247 0.9345 0.9848

The results demonstrate that incorporating an MLP as a
post-processing step significantly enhances forecasting accu-
racy. The Chronos+MLP combination achieves a considerable
reduction in all the metrics compared to Chronos Zero-Shot,
highlighting the advantage of leveraging deep learning to
refine multivariate predictions into a more accurate univariate
forecast.

D. Stock trading simulation

To practically verify the capabilities of the various models
(Zero-Shot, Fine-Tuned, Zero-Shot + MLP, and Fine-Tuned
+ MLP) a stock trading simulation was implemented. The
Zero-Shot model refers to the original Chronos model, while
the Fine-Tuned model corresponds to Chronos fine-tuned as
described in Section The Zero-Shot with MLP applies
the MLP as outlined in Section [[II-C| and the Fine-Tuned with
MLP combines the fine-tuned model with the neural network.
The objective is to assess how effectively the aforementioned
systems can predict the next day’s closing price and make
informed trading decisions, ultimately comparing its perfor-
mance against a traditional Buy & Hold strategy.

The stock that has been used is AAPL. A sliding window
of 90 days is used as context for each prediction, starting from
November 1st, 2023.

The trading bot operates on a daily basis following a
straightforward decision-making process:

o BUY: If the predicted closing price is at least 0.1% higher
than the current price and sufficient capital is available,
as many shares as possible are purchased.

o SELL.: If the predicted closing price is at least 0.1% lower
than the current price and shares are held, all held shares
are sold.

e« HOLD: If the predicted change does not exceed the
+0.1% threshold, or the predicted change does exceed the

fixed threshold but there are no shares held or insufficient
budget, the current position is maintained.

Each day, the portfolio value is updated by combining the
remaining budget with the current value of any held shares.

At the end of the simulation period, the final portfolio value
is compared with a Buy & Hold benchmark, where the entire
initial capital is invested at the beginning of the forecasting
period. The results of the simulations are shown in Table
while the performance of the different trading strategies over
time is presented in Figure [I5] Overall, these results suggest
that fine-tuning the Chronos model is the most critical factor in
enhancing trading performance, as it leads to higher portfolio
values. The addition of the neural network offers a slight
further improvement, particularly when paired with the fine-
tuned model. In fact, Fine-Tuned + MLP achieved the best
results.

TABLE V
COMPARISON OF THE TRADING RESULTS USING DIFFERENT METHODS.

Method Initial budget [€]  Final portfolio value [€]
Zero-Shot 10000.00 9981.79
Fine-Tuned 10000.00 10247.77
Zero-Shot + MLP 10000.00 10064.53
Fine-Tuned + MLP 10000.00 10289.94

IV. CONCLUSION

This study explored the extension of Chronos, a deep
learning framework for univariate time-series forecasting, to
a multivariate financial setting. The remarkable outcomes of
our research highlight that fine-tuning Chronos on financial
data significantly enhances its forecasting accuracy over the
zero-shot approach. Additionally, preprocessing techniques,
particularly Support Vector Regression (SVR), proved to be
the most effective in transforming multivariate inputs into
a form suitable for Chronos, while post-processing with a
Multi-Layer Perceptron (MLP) further refined predictions and
reduced errors. In a simulated trading environment, the fine-
tuned Chronos model with MLP post-processing outperformed
both the baseline zero-shot approach and a buy-and-hold
strategy.

Despite these successes, we encountered several challenges.
Fine-tuning Chronos posed challenges with overfitting, par-
ticularly when training for extended epochs, and adapting
Chronos to multivariate data introduced complexity in feature
selection and transformation. While SVR improved accuracy,
it added computational overhead, making real-time applica-
tions more challenging.

Key insights of our work include the necessity of fine-tuning
transformer-based models on domain-specific data, the im-
portance of leveraging multivariate information for capturing
financial dependencies, and the practical benefits of integrating
deep learning with structured forecasting pipelines. Future
work could explore alternative feature selection methods,
more advanced post-processing architectures, and reinforce-
ment learning for adaptive trading strategies.
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TABLE VI
TRAINING HYPERPARAMETERS AND NETWORK ARCHITECTURE

Parameter Value

Learning Rate 0.001

Weight Decay 4x10-5

Learning Rate Schedule  Step decay

Step Sizes {150, 300, 600} epochs

Decay Factor 0.1

Hidden Layers 2 (128, 64 units)

Loss Function Mean Squared Error (MSE)

Optimizer Adam

Early Stopping Patience of 100 epochs
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In this appendix, we present all the figures obtained during the experiment presented in section [[1I-A

APPENDIX A
CHRONOS FINE-TUNING

Figure [2] 3] @} 3] display the results for the Chronos fine-tuning methods, applied on different stock prices, with the training

losses reported in Figure [6]
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In this appendix, we present all the figures obtained during the experiment presented in section

APPENDIX B

PREPROCESSING METHODS FOR MULTIVARIATE-TO-UNIVARIATE TRANSFORMATION

Figures [7} [8] and [J] display the results for the simple statistical preprocessing methods.
Figures [T0] [T1] and [T2] present the results for the ML-based preprocessing methods.
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APPENDIX C
POST-PROCESSING USING MLP FOR MULTIVARIATE-TO-UNIVARIATE TRANSFORMATION

In this appendix, we present all the figures obtained during the experiment presented in section [[II-C
Figure [I3] presents the results for the Chronos+MLP method, with the Neural Network loss reported in Figure [T4]
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APPENDIX D
TRADING BOT

In this appendix, we present all the figures obtained during the experiment presented in section [[II-D]
Figure [I3] shows the different results obtained using the discussed trading methods.
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