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Abstract

This paper presents a solution for SemEval’25
Task #5, which focuses on leveraging large
language models (LLMs) for subject tagging
of technical records from Leibniz University’s
Technical Library (TIBKAT) using the GND
taxonomy. The task involves bilingual lan-
guage modeling, as the system must process
technical documents in both German and En-
glish. We explore three different approaches
of increasing complexity: embedding-based
retrieval, fine-tuned embedding models, and bi-
nary classification models. Our experiments
demonstrate that fine-tuning a multilingual sen-
tence transformer model yields the best per-
formance, significantly improving the qual-
ity of subject tagging. We also provide a
comprehensive evaluation of the models’ per-
formance, including precision, recall, and F1
score, and discuss the trade-offs between dif-
ferent approaches. The source code of this
project is available at https://github.com/
RonPlusSign/11lms4subjects.

1 Introduction

The objective of this work is to develop a solu-
tion for SemEval’25 Task #5'. This task focuses
on leveraging large language models (LLMs) for
subject tagging of technical records from Leibniz
University’s Technical Library (TIBKAT) using the
GND taxonomy. A key challenge of this task is
bilingual language modeling, as the system must
process technical documents in both German and
English.

The provided dataset consists of two types of
files: GND and TIBKAT.

The GND taxonomy (Gemeinsame Normdatei
in German, or Integrated Authority File in English)
is an international authority file used primarily by
German-speaking libraries to catalog and interlink
information on people, organizations, topics, and
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works. This dataset represents the tags to assign to
the different documents.

The TIBKAT dataset is composed of technical
records annotated with GND subject tags, and it has
been used for training and development. These doc-
uments are organized in different folders, based on
the type of document (Article, Book, Conference,
Report, Thesis) and language (en, de). This dataset
is also already divided in three splits: train, dev,
and test, where the last one is not provided with
true labels (correct GND tags) because this split is
intended for the challenge submission.

Both datasets have already been pre-processed
and converted to JSON and JSONLD format for
convenience, with a uniform format including key
informations, such as name, description and ab-
stract. The original repository also provided ad-
ditional datasets not strictly related to TIBKAT’s
document tagging, but they have not been used in
our work.

To address this task, we explore three different
approaches of increasing complexity.

Embedding-based retrieval: Generate embed-
dings for both documents and tags using an encoder
LLM, compute cosine similarity, and assign the
top-k highest scoring tags.

Fine-tuned embedding model: Fine-tune a
transformer-based encoder and apply the previous
embedding-based retrieval approach.

Binary classification model: Train a binary
MLP that, given a document and a tag, predicts
a similarity score, then selects the top-k highest
scoring tags.

2 Method

A fundamental component of our approach is the
selection of a suitable encoding model to gener-
ate dense vector representations of documents and
subject tags. We base our work on transformer-
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based architectures, starting from BERT (Devlin
et al., 2018), which introduced bidirectional self-
attention mechanisms to learn contextualized word
representations. However, since BERT is originally
designed for token-level tasks, it does not naturally
provide fixed-size sentence embeddings.

To address this limitation, Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019) was devel-
oped, modifying BERT by introducing a siamese
network architecture to derive semantically mean-
ingful sentence embeddings. SBERT significantly
improves performance on similarity-based tasks by
fine-tuning BERT with a contrastive objective.

Given the bilingual nature of the dataset, we
focus on multilingual versions of SBERT (Reimers
and Gurevych, 2020), which extend the original
SBERT framework to support multiple languages
by training on parallel and multilingual corpora.
These models are specifically optimized to map
semantically equivalent sentences across different
languages into a shared embedding space, ensuring
robust cross-lingual representations.

All the proposed approaches rely on an encoding
model to generate dense vector representations of
documents and subject tags. We experimented with
four different architectures, each varying in model
size, embedding dimensionality, and multilingual
capabilities.

The all-MiniLM-L6-v2? model is a lightweight
transformer with 22.7M parameters, producing
384-dimensional embeddings while maintaining
computational efficiency.

The distiluse-base-multilingual-cased-v1® model,
with 135M parameters, generates 512-dimensional
embeddings and is optimized for multilingual sen-
tence representation.

The cross-en-de-roberta-sentence-transformer*
is a 278M parameter model designed specifically
for cross-lingual applications, aligning semanti-
cally similar sentences across different languages
within a shared vector space.

Finally, the multilingual-e5-large® model (Wang
et al., 2024) is the most complex architecture, fea-
turing 560M parameters and a 1024-dimensional
embedding space, offering robust performance for
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multilingual text processing.

2.1 Embedding-based retrieval

Sentence embeddings encode the semantic mean-
ing and relationships between sentences, ensuring
that semantically similar sentences have closely re-
lated representations. By leveraging this property
of sentence encoders, we can identify tags that are
most relevant to the document we want to annotate.
To measure the similarity between embeddings, we
use cosine similarity, defined as:

A-B

cossim(A, B) = cos(#) = iy

ey
where A - B is the dot product of the two vectors,
||A|| is the Euclidean norm (magnitude) of vec-
tor A, |B|| is the Euclidean norm (magnitude) of
vector B, 6 is the angle between the two vectors.
Finally, we assign the document the top-k tags with
the highest similarity scores.

2.2 Fine-tuned embedding model

To perform fine-tuning, we created a dataset struc-
tured around three key elements. The first is the
anchor, which contains the text of the document.
The second is the positive, which includes the cor-
rect tag associated with the document. Finally, the
third element is the negative, which contains an
incorrect tag. This structure allows us to refine
the model, helping it better distinguish between
appropriate and inappropriate tags.

We used different losses and compared them in
order to see the best performing ones.
TripletLoss (Schroff et al., 2015): Minimizes the
distance between the anchor and positive while
maximizing the distance between the anchor and
negative.

CosineSimilarityL.oss: Computes the cosine sim-
ilarity between the anchor and either the positive
or negative sample. It requires a float label, where
0.0 represents a negative tag and 1.0 represents a
positive tag.

CoSENTLoss (Huang et al., 2024): A ranking-
based loss function that optimizes sentence embed-
dings by ensuring consistency between training and
prediction, aligning cosine similarity rankings with
annotated similarity labels to improve semantic rep-
resentation and model efficiency.

AnglELoss (Li and Li, 2024): A modification of
CoSENTLoss designed to address the issue where
the cosine function’s gradient approaches zero near
the peak or trough of its wave.
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MultipleNegativesRankinglLoss  (Henderson
et al.,, 2017): A loss function designed for
training sentence embeddings using only positive
pairs, where each anchor-positive pair in a batch
treats all other positives as negatives, optimizing
embeddings for tasks like semantic search and
paraphrase identification.

2.3 Binary classification model

We trained a Multi Layer Perceptron, starting from
the document and tag embeddings. The goal is to
generate a model capable of recognizing when a
document is related to a given tag.

Thus, the training is performed on a binary task.
We stacked the document embedding and the tag
embedding in a single vector and passed it to the
network. We created several pairs (document em-
bedding, tag embedding), corresponding to both
positive and negative cases, associated with pos-
itive or negative ground truth, respectively. The
embeddings are created using a pretrained model
as described in 2.1.

We designed the network by first doubling the
dimensionality of the input features. These features
are then projected onto 1024 neurons, followed by
a single output neuron, as shown in Figure 2. To
enhance the model’s generalization, we incorporate
dropout layers with a probability of 0.5 after each
activation, except for the output layer. We initial-
ized the network weights using Kaiming normal
initialization to facilitate efficient training.

Loss. We used Binary Cross Entropy loss, to ac-
count for errors in binary classification:

f(z) =log(a(2)) )
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Figure 2: MLP architecture; 4 represent the hidden
dimensionality of the embeddings.

where ¢ is the sigmoid function, ; is the output
of the model and y; is the ground-truth.

We also added weight decay regularization, to
mitigate overfitting.

3 Experimental results

In this section, we discuss the experiments con-
ducted. Following the SemEval task guidelines, we
evaluated our solution using top-k metrics, where
k € {5,10,...,45,50}, considering precision, re-
call, and F1 score. Due to the nature of these met-
rics, precision tends to decrease as k increases,
while recall exhibits the opposite trend. For clar-
ity, Tables [2, 3] present only the top-5 metrics,
whereas the complete results are illustrated in Fig-
ures [1,3].

3.1 Performance

We computed the latency and resource consump-
tion of the models, using the GPU NVIDIA T4
of Google Colab. As expected, all-MiniLM-L6-v2
has the lowest latency, due to its smaller size. For
each model, latency is measured by encoding one
sentence at a time and iterating for 10,000 steps.
Results can be found in Table 1.
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Figure 3: Finetuning of all-MiniLM-L6-v2 with different losses
Model Latency (ms) Parameters (M) Loss Precision T Recall 1 F1 71
(D) 8 22.7 Triplet 0.22% 0.38% 0.27%
2) 8 135 CosineSim 3.32% 8.24% 4.69%
3) 18 278 AnglE 6.10% 14.44% 8.47%
“4) 55 560 CoSENT 7.61% 17.41% 10.48%
MultiNeg 9.03% 20.78% 12.44%
Table 1: Perfomances of the different models [(1): all- .
MultiNeg* 9.74% 21.70% 13.28%

MiniLM-L6-v2, (2): distiluse-base-multilingual-cased-
vl, (3): cross-en-de-roberta-sentence-transformers, (4):
multilingual-e5-large].

Model Precisiont Recallt FI17
(1) 2.43% 535% 3.31%
2) 3.29% 7.81%  4.58%
3) 0.41% 098%  0.58%
4) 5.36 % 12.96% 7.50%

Table 2: top-5 metrics using Cosine Similarity with
different models [(1): all-MiniLM-L6-v2, (2): distiluse-
base-multilingual-cased-vi, (3): cross-en-de-roberta-
sentence-transformers, (4): multilingual-e5-large].

3.2 Embedding-based retrieval

For this approach, we tested the four models in
order to see the best performing ones. As ex-
pected, the models get better as they grow in
size. The only exception is cross-en-de-roberta-
sentence-transformer that actually performs worse
than the smaller models. This could be due to the
fact that cross-en-de-roberta-sentence-transformer
is specifically tailored for cross-lingual sentence
embeddings between English and German, but it
might not generalize well to the specific domain of
technical documents used in this task.

Results are shown in Figure 1 and Table 2.

Table 3: top-5 metrics for fine-tuning the model all-
MiniLM-L6-v2 for one epoch with different losses.
MultiNeg* is fine-tuned for 3 epochs.

3.3 Fine-tuned Embedding Models

Since fine-tuning is a time- and resource-intensive
task, we selected only the smallest model, all-
MiniLM-L6-v2, for experimentation.

As shown in Figure 3, TripletLoss leads to per-
formance degradation due to the absence of hard
negatives in our dataset. All other loss functions
are effective, with MultipleNegativesRankingLoss
performing the best due to its ability to leverage
multiple negative samples, thereby improving the
model’s discriminative power.

The results in Table 3 indicate a significant im-
provement, even though the model was trained for
just a single epoch. This suggests that more ex-
tensive fine-tuning could yield even better perfor-
mance. So, we finetuned up to 3 epochs using
the best loss (MultipleNegativesRankingLoss) ob-
serving a discrete improvement. However, as the
primary objective of this study is to compare dif-
ferent approaches rather than to optimize a single
model exhaustively, we opted not to invest addi-
tional resources into longer training.
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Figure 4: Comparison of quality metrics using MLP or Cosine Similarity

3.4 Binary classification model

As in fine-tuning, we decided to use all-Minil.M-
L6-v2 to generate embeddings for the binary classi-
fication task. After extensive hyperparameter tun-
ing and architecture design, we achieved better re-
sults than those obtained by using cosine similarity.
As shown in Figure 4, the MLP does not provide a
significant improvement in the top-5 metrics. How-
ever, for k£ > 10, its performance follows a trend
similar to that of the fine-tuned models, though
with lower overall results. The training was carried
out over 30 epochs.

4 Conclusions

All three approaches we tested proved to be suc-
cessful. The best results were achieved with fine-
tuning using MultipleNegativesRankingLoss, while
the other two approaches yielded similar perfor-
mance.

The MLP we designed does not achieve com-
parable results, but it improves performance with
respect to using cosine similarity directly on em-
beddings.

Given the promising results from fine-tuning
even the smallest model, we believe that applying
the same fine-tuning techniques to larger models
like multilingual-e5-large could further enhance
performance. Future work could focus on exten-
sive fine-tuning and hyperparameter optimization
of these larger models, or on combining fine-tuned
models with a binary classifier, to fully leverage
their potential for the task of automated subject
tagging in bilingual technical documents.
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A Loss plots

This appendix contains the training and validation loss plots obtained during the experiments.
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Figure 5: Training and Validation loss of fine-tuning
using CoSENT loss
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Figure 7: Training and Validation loss of fine-tuning
using Cosine Similarity loss
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Figure 9: Training and Validation loss of fine-tuning
using Multiple Negative Ranking loss
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Figure 6: Training and Validation loss of fine-tuning
using AnglE loss
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Figure 8: Training and Validation loss of fine-tuning
using Triplet loss
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Figure 10: Training and Validation loss of Multi
Layer Perceptron



