Domain Randomization Techniques for
Reinforcement Learning: Bridging the Reality Gap

Andrea Delli
Politecnico di Torino
$331998
§331998 @ studenti.polito.it

Abstract—Reinforcement learning (RL) has shown great
promise in addressing complex control tasks; however, transfer-
ring policies from simulation to real-world applications remains
challenging due to the sim-to-real gap. This study investigates
the effectiveness of domain randomization techniques to enhance
policy robustness and generalization across diverse environments.
Focusing on Hopper and Walker2d environments, we explore
Uniform Domain Randomization (UDR) and Truncated Normal
Domain Randomization (TNR) to evaluate their impact on sim-
to-real transfer.

Our experiments reveal that UDR consistently outperforms
TNR, achieving higher average rewards and exhibiting supe-
rior generalization to unseen dynamics. Notably, single mass
randomization experiments underscore the sensitivity of specific
body segments, such as leg masses, to overall performance,
suggesting that more targeted randomization approaches could
further improve policy effectiveness. Additionally, increasing the
domain gap demonstrated UDR’s ability to maintain, and in
some cases exceed, the performance of policies trained directly
in target environments, as observed in the Walker2d scenario.

I. INTRODUCTION

Reinforcement learning (RL) has emerged as a powerful
framework for solving complex control and decision-making
tasks. However, the gap between simulation-based training and
real-world deployment, commonly referred to as the “reality
gap” (or “sim-to-real gap”), poses significant challenges. Sim-
ulated environments, despite their efficiency and safety for
training, often fail to capture the full range of dynamics present
in the physical world, leading to suboptimal performance
during real-world deployment.

Domain randomization has been proposed as an effective
strategy to address this gap. By systematically varying envi-
ronmental dynamics during training, this technique exposes
RL agents to a broader set of scenarios, enhancing their
robustness and generalization capabilities. This study focuses
on evaluating the impact of domain randomization techniques
in mitigating the sim-to-real gap through a controlled sim-to-
sim transfer setup. Two reinforcement learning environments,
Hopper and Walker2D, are used as testbeds, representing
challenges of varying complexity.

In this work, we systematically explore the effects of
Uniform Domain Randomization (UDR) and Truncated
Normal Domain Randomization (TNR) on policy robustness
and generalization.

Giorgia Modi
Politecnico di Torino
$330519
$330519@ studenti.polito.it

Ivan Necerini
Politecnico di Torino
s345147
5345147 @ studenti.polito.it

Fig. 1. OpenAl Gym'’s Hopper (left) and Walker2d (right) environments

Key contributions include:

1) A comparative analysis of UDR and TNR across mul-
tiple scenarios, including single-mass and multi-mass
randomization setups.

2) Insights into the sensitivity of specific dynamics param-
eters, such as leg and foot masses, on the effectiveness
of domain randomization.

3) The evaluation of increasing source-to-target domain
gaps, providing a rigorous test of policy robustness.

Our findings highlight the central role of carefully de-
signed domain randomization strategies in reducing the sim-
to-real gap, offering practical insights to improve RL-based
approaches in robotics.

II. RELATED WORKS

Reinforcement Learning (RL) has emerged as a powerful
framework for teaching agents to make decisions in complex
environments. The foundational work by Sutton and Barto
[1] provides a comprehensive introduction to RL, covering its
theoretical underpinnings and practical applications. While RL
has been successfully applied in many domains, its extension
to robotics presents unique challenges [2]. Robots operating in
real-world environments must contend with high-dimensional

state spaces, noisy sensor inputs, and dynamically changing
conditions [3].

One significant challenge in deploying RL policies learned
in simulation to real-world robots is the so-called sim-to-
real gap (or reality gap) [4]. This discrepancy arises be-
cause simulation environments, while useful for fast and safe
training, cannot perfectly replicate the complexities of real-
world physics and dynamics. To address this, researchers have
explored the sim-to-real transfer paradigm, which aims to
bridge the gap between simulated and real-world environments
[5].

A widely adopted strategy for sim-to-real transfer is domain
randomization, as introduced by Tobin et al. [6]. Domain
randomization involves training RL agents on a diverse set
of randomized environments, forcing the policies to generalize
across a range of dynamics parameters such as masses, friction
coefficients, and visual textures. This approach has been shown
to produce robust policies that can effectively transfer to target
domains without requiring extensive fine-tuning.

Building on these concepts, Peng et al. [5] demonstrated the
effectiveness of dynamics randomization for robotic control
tasks, achieving successful transfer of policies trained in
simulation to real-world robots. Other works have extended
this idea by combining domain randomization with advanced
RL algorithms like Proximal Policy Optimization (PPO) [7]
and Soft Actor-Critic (SAC) [8], which provide stable and
efficient training frameworks.

In this project, the sim-to-real transfer challenge is explored
through a simplified sim-to-sim transfer scenario. Specifically,
a controlled discrepancy is manually introduced between the
source and target domains to simulate the reality gap. This
approach allows for a systematic evaluation of how domain
randomization can mitigate the negative effects of such dis-
crepancies. By focusing on dynamics parameters such as the
link masses in the Hopper environment, the project implements
different Domain Randomization techniques to enhance the
robustness of learned policies.

The emphasis on sim-to-sim transfer with manually injected
discrepancies highlights an important aspect of the broader
sim-to-real paradigm. It allows researchers to precisely quan-
tify the performance degradation caused by domain shifts and
evaluate the effectiveness of domain randomization techniques.

Overall, Domain randomization is a key strategy for ad-
dressing sim-to-real transfer challenges. This project explores
how controlled variations in domain parameters enhance the
robustness of learned policies, improving reinforcement learn-
ing applications in robotics.

III. METHODS

This project focuses on implementing a reinforcement learn-
ing (RL) pipeline to train control policies for robotic environ-
ments using state-of-the-art algorithms, specifically Proximal
Policy Optimization (PPO). The environments considered in-
clude the Hopper and Walker2d from OpenAl Gym [9], both
simulated using the MuJoCo physics engine [10]. These ex-
periments simulate the sim-to-real transfer problem through a

sim-to-sim transfer setup, where discrepancies between source
and target domains are introduced manually. Below, we detail
the methods and tools employed.

A. Reinforcement Learning Pipeline

To train the RL agent, we used the third-party library
stable-baselines3 [11], which provides an easy-to-use
implementation of modern RL algorithms. The PPO algorithm
was selected for this project due to its robustness and efficiency
in optimizing control policies.

Proximal Policy Optimization (PPO) is a policy-gradient
method designed to achieve reliable training by avoiding large
updates to the policy. The algorithm introduces a clipped
surrogate objective to restrict the step size during updates,
ensuring that the new policy remains close to the old one.
PPO is particularly suitable for continuous control tasks such
as the Hopper environment or the Walker2d environment.

B. Hopper and Walker2d Environments

The Hopper and Walker2d environments, both provided by
OpenAl Gym, model robots tasked with learning locomotion
skills through reinforcement learning. The Hopper environ-
ment' simulates a one-legged robot with the goal of hopping
forward without falling, maximizing horizontal speed. The
Walker2d environment® simulates a bipedal robot learning
to walk efficiently. Both environments leverage the MuJoCo
physics engine to simulate realistic dynamics. The environ-
ment offers a Python interface, enabling the manipulation
of physical parameters and access to observation and action
spaces. Below, we summarize the main characteristics and
modifications made for this task.

The Hopper environment has an 11-dimensional continuous
state space, which includes the vertical position of the torso,
joint angles of the thigh, leg, and foot, and the torso’s angular
orientation, along with the horizontal and vertical velocities
of the torso and angular velocities of the joints. The action
space is a 3-dimensional continuous vector representing the
torques applied to the thigh, leg, and foot joints, each bounded
between -1 and 1. To simulate the sim-to-real transfer problem,
two custom domains were created: a source domain with a
reduced torso mass of 1 kg and a target domain representing
the “real-world” scenario with the default Hopper model. The
reward function in the Hopper environment consists of a
forward reward for horizontal motion, a control cost penalizing
large torque values, and a healthy reward for maintaining a
valid configuration. Episodes terminate if the hopper falls or
deviates from a healthy state, as defined by constraints on its
height, angles, and velocities.

In the Walker2d environment, the state space is 17-
dimensional, consisting of the z-coordinate of the torso (repre-
senting its height), its angular orientation, joint angles for both
legs, thighs, feet, and velocities corresponding to these position
variables. The action space is an 6-dimensional continuous
vector, representing the torques applied to each joint. Similar

Uhttps://www.gymlibrary.dev/environments/mujoco/hopper/
Zhttps://www.gymlibrary.dev/environments/mujoco/walker2d/

to the Hopper environment, a custom domain strategy is used
to evaluate sim-to-sim transfer, with the source domain having
a reduced torso mass by 1 kg, and the target domain using the
default Walker2d model. The reward function in the Walker2d
environment encourages forward progress in the positive x-
direction, penalizes excessive torque usage, and provides a
healthy reward for keeping the robot upright within valid
configuration bounds. Episodes terminate when the robot falls,
when its torso’s angular orientation exceeds 1 radian, or when
the episode reaches a maximum time limit of 1,000 steps.

C. Domain Randomization

To enhance the generalization capability of the trained
policy, domain randomization was implemented. This involved
randomizing the dynamics parameters of the Hopper environ-
ment during training, such as masses and friction coefficients.

We applied two types of domain randomization methods to
the masses of the source environments: uniform randomization
and truncated normal randomization, in order to help the policy
generalize to unseen conditions by simulating variability in the
environment’s physical parameters.

a) Uniform Randomization: The mass m; of each body
segment, excluding the torso, was sampled from a uniform
distribution, where all values within a specified range are
equally likely:

m ~ u(m;)riginal _ 1’ m;)riginal + 1) (1)

b) Truncated Normal Randomization: The masses were
also sampled from a truncated normal distribution, which
is derived from a normal distribution where the values are
confined to a specific range. The masses are sampled from
this distribution as follows:
griginal 1 mqriginal _ 17,rnti)riginal + 1)7 (2)

(3 ? (3

m; ~ TruncNorm(m

where m{ "™ is used as the mean of the distribution, 1 is
the variance, and the range m{"™' + 1 confines the sampled
values to within 1 unit of the original mass. This ensures that
most sampled values are close to the original mass, while still

allowing for some variability.

IV. EXPERIMENTS

In this project, we conducted several experiments to evaluate
the impact of different design choices on policy performance.
This section presents the results of these experiments, starting
with initial tests performed on the Hopper environment. These
experiments serve as a foundation for later comparisons with
experiments conducted on the Walker2d environment.

A. Learning Rate Schedules

In this experiment, we tested three types of learning rate
(LR) schedules: constant, linear, and exponential. These sched-
ules control how the learning rate evolves during training,
potentially impacting the policy’s performance. Each schedule
has an initial learning rate value of vijia = 0.0003.

a) Constant Schedule: The learning rate remains fixed at
a value of Vi throughout training.

b) Linear Schedule: In the linear schedule, the learning
rate decreases linearly from its initial value to zero over the
course of training:

Ir(p) = p - Vinitial» 3)

where p represents the progress remaining, a value that de-
creases linearly from 1 to O during training.

c) Exponential Schedule: The exponential schedule de-
creases the learning rate exponentially as training progresses:

Ir(p) = Itinitiar - D", 4

where p is the progress remaining (decreasing from 1 to O
during training) and r is the decay rate, fixed to 0.1 in our
case.

In Figure 2, the learning rate schedules—constant, linear,
and exponential—are illustrated.

We tested all three schedules on the source Hopper en-
vironment with 2,000,000 timesteps for each training. The
results, reported in Table I, show that the exponential learning
rate schedule outperformed the others. This can be attributed
to its gradual reduction of the learning rate, which balances
exploration and exploitation effectively. Early in training, a
higher learning rate encourages exploration, while the slower
decay as p approaches 0 allows for fine-tuning the policy in
later stages.

This experiment result led us to apply the exponential learning
rate scheduler for all subsequent trainings.

TABLE 1
COMPARISON OF LEARNING RATE SCHEDULES FOR HOPPER MODELS

LR Schedule | Test Reward (avg + std)
Constant 1202.06 + 324.22
Linear 1194.65 + 237.26
Exponential 1263.31 + 215.91

B. Grid Search for Hyperparameters Tuning

To optimize the performance of our reinforcement learning
model, we conducted a grid search over the following hyper-
parameters:

» n_epochs € {5,10,20}

e clip_range € {0.1,0.2,0.3}

e gae_lambda € {0.9,0.95,0.99}

e gamma € {0.95,0.99,0.999}

e batch_size € {32,64,128}

For each combination, we trained the model on the source
domain for 100,000 timesteps and evaluated the mean reward
on 100 testing episodes.

The results revealed significant variability in performance
across parameter configurations. The best combination, which
achieved a mean reward of 1461.24, was n_epochs = 20,
clip_range = 0.3, gae_lambda = 0.99, gamma = 0.999,
and batch_size = 128.

We subsequently trained this best model for 2 million
timesteps to confirm its effectiveness. However, for com-
parison, we also trained a model using the standard PPO

Constant Learning Rate Schedule

Linear Learning Rate Schedule

Exponential Learning Rate Schedule

0.00030

0.00030 +
0.00025 0.00025
0.00020 0.00020

0.00015 + 0.00015 4

Learning Rate
Learning Rate

0.00010 + 0.00010 +

0.00005 - 0.00005 +

0.00000 0.00000 +

0.00030

0.00025 -

0.00020

0.00015 {

Learning Rate

0.00010 +

0.00005

0.00000

T T T T T T T T
10 0.8 0.6 0.4 0.2 0.0 10 0.8
Remaining Progress

Remaining Progress

T T T T T T T T T T
0.6 0.4 0.2 0.0 Lo 0.8 0.6 0.4 0.2 0.0
Remaining Progress

Fig. 2. Comparison between different Learning rate schedules - constant, linear, and exponential.

hyperparameters: n_steps = 2048, batch_size = 64,
n_epochs = 10, gamma = 0.99, gae_lambda = 0.95,
clip_range =0.2, and clip_range_vf = 1.

Surprisingly, despite the exhaustive hyperparameter grid
search, the PPO baseline model, which utilized the standard
hyperparameters, performed better in terms of overall reward.
This is probably due to higher stochasticity during training
caused by the relatively low number of training timesteps used
during the grid search experiments. This result led us to the
decision to adopt the standard PPO hyperparameters for the
remainder of our study.

C. Baseline Models Evaluation on Hopper Environment

To establish a baseline for our study, we trained two models
(one on source domain and one on target domain) using the
default PPO hyperparameters, as previously described, with an
exponential learning rate schedule. All models were trained for
2 million training timesteps and evaluated on both the source
and target domains. Figures 3 and 4 illustrate the learning
curves of the source and target models, respectively.

e Source — Source: A model trained and tested on the
source domain.

o Source — Target: A model trained on the source domain
and tested on the target domain.

o Target — Target: A model trained and tested on the
target domain.

The evaluation results for these models are presented in
Table II. Each test was conducted over 1000 episodes, and the
mean reward with standard deviation is reported.

TABLE I
BASELINE PERFORMANCE OF HOPPER MODELS ACROSS SOURCE AND
TARGET DOMAINS

Model Setup
Source — Source
Source — Target
Target — Target

Test Reward (avg + std)
1471.47 + 311.72
1495.05 + 253.62
1696.48 + 93.64

The Target — Target model achieves the highest rewards
with low variance, indicating strong consistency within the
source domain. Similarly, the Source — Source model per-
forms well, as expected, since it is trained and tested within the
same environment. Surprisingly, the Source — Target model

performs comparably to the Source — Source model, despite
the domain gap. This unexpected robustness suggests that the
policy trained in the source domain was able to generalize
well to the target domain. A possible explanation lies in the
simpler dynamics of the source environment; for example, the
source domain’s configuration, featuring a mass of less than
1 kg, may have resulted in a smoother optimization landscape
during training. These conditions appear to have helped the
source-trained policy generalize effectively, even to a domain
with differing dynamics.

Typically, a domain gap leads to performance degradation,
because policies trained in the source domain adapt to its
specific physical parameters, such as mass or friction, and may
struggle with unseen dynamics in the target domain. However,
in this case, the inherent robustness of the source-trained
policy appears to have mitigated these challenges. While
training directly on the target environment might seem like
an ideal solution for maximizing performance, this approach
is often impractical in real-world scenarios due to high costs,
safety concerns, and the time-intensive nature of hardware
training. Simulation, on the other hand, enables faster and safer
experimentation while avoiding wear and tear on physical sys-
tems. This underscores the importance of sim-to-real research,
where the goal is to train policies in simulation that generalize
effectively to real-world systems. These baseline results estab-
lish a foundation for evaluating advanced techniques, such as
domain randomization, in subsequent sections.

D. Domain Randomization on Hopper environment

Despite the promising performance observed in the Source
— Target configuration of the baseline models, we explored
the application of domain randomization to evaluate its impact
on policy robustness. How previously discussed in section
III-C, two strategies were tested: Uniform Domain Random-
ization (UDR) and Truncated Normal Domain Randomization
(TNR). In both cases, randomization was applied to the link
masses of the Hopper, with the torso mass excluded from ran-
domization to maintain the sim-to-real gap. For each episode,
the randomized masses were sampled either from uniform
distributions (UDR) or truncated normal distributions (TNR),
and training was conducted on the source domain using the
same PPO algorithm and hyperparameters as in the baseline
experiments.

Learning Curve (Smoothed)

—— Training Rewards (Smoothed)
Training Rewards

500

1 1000 2000 3000 4000 5000 6000 7000
Number of Episodes

Fig. 3. Learning curve on the source domain.

The results of these experiments, summarized in Table III,
reveal notable differences between the two strategies. UDR led
to a significant improvement in performance for both Source
— Source and Source — Target configurations, with rewards
closely aligned between the two domains. This indicates that
the policy trained with UDR is robust to variations in dynam-
ics, successfully generalizing to the target domain despite the
domain gap. Interestingly, UDR even outperformed the Target
— Target baseline reported in Table II, further highlighting
its effectiveness. Moreover, UDR significantly reduced the
variance, dropping from approximately 300 (baseline models)
to less than 10, making the model notably more stable.

In contrast, TNR produced inferior results, with lower
rewards and higher variance compared to UDR in both con-
figurations. In addiction, the performance gap between Source
— Source and Source — Target increases. This suggests that
TNR may introduce instability during training, potentially due
to the properties of the truncated normal distribution, which
can lead to inconsistent dynamics encountered across episodes.

TABLE III
COMPARISON OF UNIFORM AND GAUSSIAN DOMAIN RANDOMIZATION IN
THE HOPPER ENVIRONMENT

UDR
1719.87 + 8.32
1721.65 £ 9.58

TDR
1286.19 + 366.47
1351.57 + 133.70

Test reward (avg + std)
Source — Source
Source — Target

These findings demonstrate the benefits of UDR in improv-
ing policy robustness by encouraging the agent to solve the
task for a range of multiple environments at the same time,
such that its learned behavior may be robust to dynamics
variations. However, the effectiveness of domain randomiza-
tion relies on careful design of the randomization ranges.
Poorly chosen ranges could either fail to capture meaningful
variations or introduce excessive noise, potentially hindering
performance. While UDR showed strong generalization in
this controlled setting, applying it effectively to real-world
scenarios would require ensuring that the simulated variations
adequately reflect real-world dynamics.

Learning Curve (Smoothed)

— Training Rewards (Smoothed)
2500 Training Rewards

2000

1500

1000

500

o 1000 2000 3000 4000 5000 6000 7000 8000
Number of Episodes

Fig. 4. Learning curve on the target domain.

E. Single Mass Domain Randomization on Hopper Environ-
ment

To further investigate the impact of domain randomization
on policy robustness, we conducted an additional experiment
to isolate the contributions of individual masses. Specifically,
we applied domain randomization singularly to each link mass
(thigh, leg, and foot) while keeping the others fixed. This
experiment aimed to identify which masses most significantly
influence the results observed in the prior domain randomiza-
tion experiments. The outcomes are summarized in Table IV.

Under UDR, all three single mass randomizations produced
consistent performance between Source — Source and Source
— Target configurations, showing good generalization. Among
these, the leg mass randomization had the most significant
impact, yielding the best results with quite low variance.
Conversely, foot mass randomization led to significantly lower
performance, suggesting that variability only in this parameter
introduces dynamics that are particularly difficult for the policy
to handle effectively.

TNR showed surprising improvements with single mass
randomization compared to the full DR experiment. Notably,
the Source — Source and Source — Target performances
aligned well, which was an issue in the previous experiment
with all masses randomized simultaneously. Surprisingly, all
three single mass randomizations produced robust performance
with TNR, outperforming the results obtained in the previous
experiment. Also in this case, the leg mass randomization
achieved the best performance. This highlights that randomiz-
ing a single mass at a time may reduce the instability intro-
duced by simultaneous randomization of multiple dynamics
parameters.

Nevertheless, considering the results from the all-masses
randomization in the previous experiment, we will continue
using Uniform Domain Randomization going forward, rather
than Truncated Normal Domain Randomization.

FE. Increase Source-Target Gap in Hopper Environment

To further challenge the model’s ability to generalize across
environments, we increased the domain gap by modifying the
source environment’s torso mass to be —2kg, compared to
the target domain configuration. This adjustment amplifies the

TABLE IV
IMPACT OF THIGH, LEG, AND FOOT RANDOMIZATION USING UNIFORM AND NORMAL DISTRIBUTIONS IN HOPPER ENVIRONMENT.

Uniform
Thigh Leg

Test reward (avg + std)

Normal

Foot Thigh Leg Foot

1459.02 + 101.61 1721.99 £ 104.94
1466.23 + 112.99 1723.13 £ 103.06

Source — Source
Source — Target

1320.71 + 268.69
1321.97 + 271.90

172521 £ 17.97 1791.63 £ 246.64
1725.12 + 17.60 1786.45 + 261.22

1768.91 £+ 53.58
1769.61 + 52.63

discrepancy between the source and target domains, providing
a more rigorous test of policy robustness.

As in previous experiments, we employed Uniform Domain
Randomization for all link masses (thigh, leg, and foot). The
goal was to evaluate the impact of this increased domain gap
on baseline performance and assess the effectiveness of UDR
in improving generalization.

The results, summarized in Table V, reveal that the larger
domain gap leads to a general decrease in performance across
all configurations compared to the original setup (Table II
and Table III). However, models trained with UDR show
noticeable improvements in generalization, with rewards in-
creasing slightly and approaching those of the Target — Target
configuration, though not yet reaching comparable values.
Despite the increased difficulty in achieving better results due
to the larger gap, UDR proves to be highly effective, improving
performance significantly and highlighting its value in training
more robust policies under challenging domain conditions.

TABLE V
ANALYSIS OF HOPPER PERFORMANCE UNDER INCREASED
SOURCE-TO-TARGET GAP.

Model Setup

Source — Source (no DR)
Source — Target (no DR)
Source — Source (UDR)
Source — Target (UDR)
Target — Target

Test Reward (avg + std)
1190.83 + 154.54
1190.58 + 160.12
1412.48 + 249.39
1416.21 + 256.35
1696.48 + 93.64

G. Baseline Models Evaluation on Walker2d Environment

Following the methodology applied to the Hopper environ-
ment, we conducted a baseline evaluation on the Walker2d
environment. The Walker2d environment is similar to Hopper
but features a more complex structure with doubled body
segments, making it a suitable extension for our study on sim-
to-real transfer.

In the source environment of Walker2d, similar to Hopper,
a domain gap is introduced by reducing the torso mass by
lkg compared to the target environment. Using the same PPO
algorithm and hyperparameters as described in the Hopper
experiments (Section IV-C), we trained and tested models in
three configurations: Source — Source, Source — Target, and
Target — Target.

The results are summarized in Table VI. Both the Source
— Source and Target — Target configurations show strong
performance, as policies are fully adapted to their respective
domains. In contrast, the Source — Target configuration ex-
hibits slightly lower rewards due to the domain gap, reflecting
the challenges of cross-domain generalization.

Additionally, the variance across all three configurations is
notably high, indicating that the policies’ performance can
be unstable, particularly when faced with domain gaps. The
results of these experiments are largely consistent with those
observed in the Hopper environment. However, in this case,
the Source — Target configuration achieves relatively lower
rewards in comparison, whereas in the Hopper environment,
we found that Source — Target was more aligned with Source
— Source performance.

TABLE VI
BASELINE PERFORMANCE OF WALKER2D MODELS ACROSS SOURCE AND
TARGET DOMAINS.

Test Reward (avg + std)
2376.83 + 765.40
2039.69 + 940.58
2293.77 4+ 453.39

Configuration
Source — Source
Source — Target
Target — Target

H. Domain randomization on Walker2d environment

To further evaluate the robustness of policies, we applied
domain randomization to the Walker2d environment, following
the same methodology as in the Hopper experiments (Sec-
tion IV-D and Section IV-E).

1) All Mass Randomization: In this setup, all body segment
masses were randomized simultaneously, except the torso
mass. The results, presented in Table VII, indicate that UDR
consistently outperformed TNR in both Source — Source and
Source — Target configurations. The higher average rewards
and lower variance observed with UDR highlight its effec-
tiveness in training policies that generalize across domains.
This result is in line with the findings from the Hopper
experiments, where UDR similarly improved performance and
stability across varying domain configurations.

TABLE VII
COMPARISON OF UNIFORM AND GAUSSIAN DOMAIN RANDOMIZATION IN
THE WALKER2D ENVIRONMENT

TNR (avg + std)
1605.18 £ 761.54
1589.14 + 749.07

Configuration
Source — Source
Source — Target

UDR (avg =+ std)
2854.67 4+ 583.67
2861.97 + 576.78

2) Single Mass Randomization: Building on insights from
the Hopper experiments, we investigated the impact of ran-
domizing individual body segments (thigh, leg, and foot) in the
Walker2D environment. To ensure consistency and symmetry
in the randomization process, we implemented a unified sam-
pling approach: when randomizing a specific segment, such as
the thigh, the same random value was applied to both the left

TABLE VIII
IMPACT OF THIGH, LEG, AND FOOT RANDOMIZATION USING UNIFORM AND NORMAL DISTRIBUTIONS IN WALKER2D ENVIRONMENT.

Test reward (avg + std) Uniform Normal

Thigh Leg Foot Thigh Leg Foot
Source — Source 3360.91 4+ 785.10 4228.56 £ 845.09 3919.82 + 975.15 | 3109.39 4+ 1116.03 1221.81 + 725.5 2656.49 + 779.30
Source — Target 3345.01 4+ 812.06 4138.72 £ 826.53 3939.74 + 956.36 | 3201.08 4+ 1176.75 1260.49 4+ 740.97 2689.84 + 772.25

and right counterparts, preserving the symmetry of the robot’s
dynamics.

The results, summarized in Table VIII, show that single
mass domain randomization is significantly more effective
than all-masses domain randomization, achieving much better
results for all three individual masses and both types of
domain randomization, except for TNR with the leg mass,
which showed worse performance. Overall, the behavior is
similar to that observed in the Hopper environment, but in
this case, single mass randomization delivers far superior
results, even surpassing the previous performance (including
Target — Target) reported in Table VI and Table VII. This
improvement may be due to the fact that randomizing each
mass individually (in pairs, in fact) provides better benefits
compared to randomizing all masses simultaneously, espe-
cially in a more complex environment like Walker2d. For
UDR, the best domain randomization performance is achieved
by randomizing only the two legs, while for TNR, the best
performance is obtained by randomizing both thighs.

L. Increase Source-to-Target Gap on Walker2d

Building on the methodology applied in the Hopper envi-
ronment, where the domain gap was increased by reducing the
torso mass by 2kg instead of 1kg, the Walker2d environment
was modified to create an even larger domain gap by tripling
the mass of the feet in the source environment compared to
the target environment. The results are reported in Table IX.

TABLE IX
ANALYSIS OF WALKER2D PERFORMANCE UNDER INCREASED
SOURCE-TO-TARGET GAP.

Model setup

Source — Source (no DR)
Source — Target (no DR)
Source — Source (UDR)
Source — Target (UDR)
Source — Source (TNR)
Source — Target (TNR)
Target — Target

Test Reward (avg + std)
2957.91 + 894.13
2894.83 + 896.59
4158.03 + 757.54
4140.05 + 784.25
2314.29 4+ 1770.93
2353.83 + 1781.62
2293.77 + 453.39

We hypothesized that this increased domain gap would
result in a noticeable degradation in performance, particularly
for models trained without domain randomization. Surpris-
ingly, the results obtained in this experiment outperform the
baseline results (Table VI), contrary to our expectations. Both
the Source — Source and Source — Target configurations
far exceed the baseline results, even surpassing the Target —
Target performance, essentially eliminating any domain gap.
Despite this, adding UDR significantly improves performance,
yielding the best results across all experiments conducted. In

contrast, using TNR reduces performance compared to no
domain randomization, with extremely high variance. These
results do not align with those obtained in the dual-experiment
conducted in the Hopper environment, where we observed a
general degradation of performance.

V. CONCLUSION

This study investigated the effectiveness of domain ran-
domization techniques in addressing the sim-to-real trans-
fer challenge, with a focus on the Hopper and Walker2d
environments. Our experiments demonstrated that Uniform
Domain Randomization (UDR) consistently outperforms Trun-
cated Normal Domain Randomization (TNR) across all tested
scenarios. UDR not only achieved higher average rewards but
also exhibited lower variance, indicating enhanced robustness
and stability.

Experiments with single-mass randomization showed that
certain dynamics parameters, particularly leg mass, have a
significant impact on policy performance. In many cases,
single-mass randomization even outperformed all-mass ran-
domization. One area we haven’t explored yet, but could be
worth investigating, is the combination of multiple masses,
such as pairs like thigh and leg, or foot and leg. This approach
could provide deeper insights into how different body parts
interact and further improve policy performance.

Increasing the domain gap amplified the challenges of gen-
eralization, yet policies trained with UDR continued to exhibit
strong performance, often surpassing baseline configurations
trained directly on the target environment. This underscores
the adaptability of UDR to handle a wide range of dynamic
differences.

In conclusion, domain randomization, particularly UDR,
proves to be a powerful approach to bridging the sim-to-real
gap. By exposing reinforcement learning agents to diverse dy-
namics during training, this method encourages robust policy
generalization across varying conditions. These results provide
a solid foundation for advancing RL applications.

Future work could involve exploring different types of
domain randomization and testing them across a wider range
of parameters. This could help identify new strategies to make
RL policies more reliable and adaptable in a wider range of
real-world situations.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

REFERENCES

R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction (Second Edition). MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238-1274, 2013.

P. Kormushey, S. Calinon, and D. G. Caldwell, “Reinforcement learning
in robotics: Applications and real-world challenges,” Robotics, vol. 2,
no. 3, pp. 122-148, 2013.

S. Hofer, K. Bekris, A. Handa, J. C. Gamboa, F. Golemo, M. Mozifian
et al., “Perspectives on sim2real transfer for robotics: A summary
of the r:ss 2020 workshop,” in Robotics: Science and Systems (RSS)
Workshop, 2020. [Online]. Available: https://arxiv.org/abs/2012.03806
X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in /[EEE
International Conference on Robotics and Automation (ICRA), 2018.
J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” CoRR, vol. abs/1703.06907, 2017.
[Online]. Available: http://arxiv.org/abs/1703.06907

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017. [Online]. Available: http://arxiv.org/abs/1707.06347

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” CoRR, vol. abs/1801.01290, 2018. [Online]. Available:
http://arxiv.org/abs/1801.01290

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,
2016. [Online]. Available: http://arxiv.org/abs/1606.01540

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 5026-5033.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, ‘“Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1-8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

